

Welcome to taxasoft-ghini's documentation!

Contents:

	introduction
	serving

	fallback

	showcasing

	participating
	your account

	organize your pictures

	bulk inserts

	adding images

	searching

	technical documentation
	rest-api

	importing from ghini.desktop

Indices and tables

	Index

	Module Index

	Search Page

introduction

Ghini server is a AGPL software, aiming at letting professional and amateur botanists share
knowledge, in the form of plant images, localization of plant observations, taxonomic
identifications.

Ghini server follows established best practices for botanical collections, so that it can
successfully be used by botanical institutions needing a strong database foundation.

The combination ghini.server + ghini.web is the natural successor of ghini.desktop, a GPL
desktop program. Even if the interface are very similar, they are based on different
technologies, and are not compatible at the database level. There might come a
ghini.desktop version compatible with ghini.server.

serving

Installation of a ghini.server site amounts to installing a standard django service. This
is a rather technical task, so please either look for and refer to the corresponding
documentation, or ask for advise and support.

fallback

Please refer to ghini.desktop

showcasing

Ghini server's initial goal is to showcase itself in the form of geographic botanical
collections. If you have a use case and want to participate, please contact the Ghini team.
As of now, there's the following projects:

	cuaderno [https://cuaderno.ghini.me], a botanist's collection handbook.

	almaghreb [https://almaghreb.ghini.me], wild plants in the Atlas Region.

	tanager [https://tanager.ghini.me], a small privately held botanical garden. The data
in the database is by far not the complete garden's collection.

	caribe [https://caribe.ghini.me], wild plants in the Caribbean Area.

Participants get access to ghini's editing facilities and the django admin interface to the
database, while anonymous visitors can browse and query the data from the ghini interface.

participating

This page explains how to contribute data to a running ghini site.

your account

You need an account for the site, it needs to be enabled, and to make you part of the staff.
You do not need superpowers to contribute data.

[image: _images/participate-20190722113813.png]
When logged in as staff member, you will see the Insert menu next to the Ghini icon,
before the Tools menu,

[image: _images/participate-20190722161158.png]
moreover, in the Results page, right-clicking on any results row will show the context menu
associated to the row type.

[image: _images/participate-20190722114427.png]
If you do not see these, you are being handled by the software as a visitor, and you need to
logout and log back in with your full permissions.

organize your pictures

The software requires that you organize your plant images by physical plant, and by
accession. Please make sure your data follows this order before you start.

A running definition of a database accession for plants photographed in the wild, it is a
group of nearby plants, clearly of the same species and variety, very likely of the same
age, and clearly belonging to the same population. Decide for yourself if you want to use
the term accession as a synonym for population.

A running definition of a database plant for the same case, that would be a group of plants
within the same accession, difficult to separate from one another. They all share the same
geographic coordinates, and you can provide a reasonable estimate of the number of
individual plants composing the group.

bulk inserts

If you have a large amount of accessions that you want to document with plant images, you
may request a bulk insertion. Please write a friendly email to Mario Frasca
<ghini@anche.no>, stating your needs. It makes sense if you have more than, say, twenty
accessions.

adding images

The basic logic is: first have all your accessions in place, which you either do manually,
or with a request for bulk insertion, then navigate to the URL for adding plant images [https://almaghreb.ghini.me/admin/garden/plantimage/add/].

You will be presented with this form:

[image: _images/participate-20190722120634.png]
In this form you basically repeat: choosing a plant from the database, choosing a picture
from your file system, then click on one of the three Save buttons:

[image: _images/participate-20190722162120.png]
If you are adding an image for a plant already represented in the database, simply start
typing the plant accession number, and the software will present you the plants matching the
text you are typing. Each time the image is relative to a new plant, you need to add the
database object that describes the plant in question. You do so by clicking on the +
button next to the plant chooser widget.

This will open a new window,

[image: _images/participate-20190722162509.png]
Here you choose your accession, indicate a numerical sequential value for the plant
code within the accession (you need to so manually), select or add a plant location
(it would be the name of the area for your observations), provide an estimate of the
quantity of individual plants in the plant group, and use the geometry map to
indicate an approximate plant position. You do so by activating the draw a marker widget,
then clicking on the approximate spot in the map. Zoom in or zoom out, and peruse the other
widgets as necessary.

Do not forget to Save your changes.

Back to your Plant Image insertion window, browse to your image, confirm by save or
save and add another.

searching

The search strategies implemented by ghini.server and exposed through ghini.web:

	single field

	<DOMAIN> . <field> <op> <INTEGER>

Filter, based on the value of a single field of the
specified domain.

	domain

	<DOMAIN> <op> <TERM>

Filter, based on the value of the default selection fields of the
specified domain. It can be seen as a shortcut to the previous,
but where the match can be on multiple fields.

	terms

	<TERMS>

Filter, based on the value of the default selection fields of any of the search
domains. TERMS is a space-separated list of values. Again it can be seen as a
shortcut to the previous, but where the match can be on any domain. The filter
succeeds if all the terms match. If prefixed with the optional keyword or, the
filter succeeds if any one of the terms matches.

	sql-like

	<DOMAIN> where <COMPLEX-QUERY>

This is the most generic and powerful search. You give a search domain, then
specify an expression to be matched.

Expressions are composed of boolean tests on fields, either of the domain or of a
connected domain (think of accession.plants.images, or
plant.accession.verifications.taxon.epithet), tested with an operator (think
of =, like, contains, against values (think of a string, or a
number). Boolean tests can be combined with and, or, not, and
parentheses.

	depending

	<query> | depending

On any of the previous search strategies, you can append the
query modifier | depending. This changes the resulting
query-set, applying the depending function to each of the
elements in the original result.

Logged in users can use the ghini.server API to run these queries, or use teh ghini.web
interface to enter them and have the results nicely organized in the various ghini.web tabs.

technical documentation

rest-api

We have a main api for interacting with the database.

Each object has its URL, which really identifies the object (e.g.: plant #1 for
accession 101 in year 2001):

/garden/accession/2001.0101/plant/1/

Removing the object's trailing identificator from the URL gives the class
URL (e.g.: the plants collection):

/garden/accession/2001.0101/plant/

The trailing slash is part of the URL, but the server will add it if it's
missing.

collections

We organized the objects in three sections: taxonomy, collection,
garden. There might come some day a herbarium or seedbank
section, or we may reorganize in fewer sections, we will see. As of now, we
have these collections:

/taxonomy/rank/
/taxonomy/taxon/
/collection/accession/
/collection/contact/
/collection/accession/<code>/verification/
/garden/accession/<code>/plant/
/garden/accession/<code>/plant/<code>/propagation/
/garden/location/

Verifications and Plants only make sense in combination with an accession,
so their collections are behind an accession code. Same for Propagations,
which only make sense in relation with the mother plant.

individual objects

Append a primary key to a collection URL, and you get the URL for an
individual within the collection.

As far as their URLs are concerned, rank, taxon, contact have a
primary key which is a sequential number, with no semantics.

Accessions have their own accession code, Plants have a sequential plant
code within the Accession they belong to, Verifications also have a unique
sequential number within the Accession they describe. Propagations have a
sequential number within their mother Plant.

Note

If we generalize the database to model more than one garden, we will need
to associate accessions to gardens, we will probably identify gardens
with a stub, and will prepend accession urls with a garden stub code. As
of now, we only deal with a single garden.

GET and her sisters

Collection URLs implement the GET and POST verbs, respectively for getting
the whole collection (or a selection thereof), and for adding an individual
object to the collection. These URLs get a -list suffix in their Django
name.

Individual URLs implement the GET, PUT and DELETE verbs, with
their obvious meanings, applying to the specific individual only. These
URLs get a -detail suffix in their Django name.

more URLs

Collections also have an URL for the empty html form, to be populated by
the user and posted to the server. The corresponding Django names have
suffix -post-form.

Individual objects have more entry points, respectively for:

	The populated html form (django suffix -form)

	A json data dictionary for the infobox (django suffix -infobox)

	A dictionary with several representations for the same object (django suffix -markup)

	A json data dictionary with depending objects, and the definition of the
concept depends on the object. A Location considers the plants located
there as its depending objects, a Taxon its subtaxa and the accessions
verified to it. The result has the same shape as the dictionary returned
by a search. (django suffix -depending)

	A rendered html page with object pictures (django suffix -carousel)

search API

filter/ and get-filter-tokens/ are the main query api entry point.
Both expect a q parameter, which they interprets according to several
search strategies. Search strategies are described in some detail in the user
manual.

The result of a get-filter-tokens/ request is a dictionary, where the keys
are the names of the collection in the result, and the values are tokens.
You get as many tokens as the non-empty collections matching your query.

The next step on the client side is to enter a loop to cash your tokens.
Each invocation of the cash-token/<token>/ returns you a dictionary with
three entries:

	chunk holds the list of items.

	expect specifies the length of the expected complete set. One possible
use is to update a progress bar.

	done tells you whether this was the last chunk.

Attempting to cash a token which was already paid in full will provide the
empty result. Same will happen if you attempt to cash an invalid token. The
empty result is expect:0, done:True, chunk:[].

If you are somewhat too quick in cashing a new token, the expect value
could still be a large hard-coded value. The correct value is computed in a
separate thread, so the server can provide all tokens as soon as possible.

Tokens will expire after some delay in cashing them. This prevents queries to
stay active in the system while not any more relevant.

For queries where you expect a small result set (less than ~70 elements), you
can may prefer the filter/ entry point. filter short-circuits this
process, providing the concrete result at once, in a dictionary having the
same external structure as the get-filter-tokens result, one list of
objects per non-empty collection, and values as the above chunk lists.

One more entry point in this group is count/, it accepts the same
parameters as filter and get-filter-tokens, and returns a dictionary
with same external structure. The values in this case are the matching query
count(), plus a grand total under the key __total__. You can use this
to decide whether to use filter or the chunked approach
get-filter-tokens.

On the server side, executing a search corresponds to constructing one or more
queryset. Each element in the queryset is subsequently converted into a
dictionary, with the structure:

	inline

	The string shown in the result. It may contain html tags.

	twolines

	Three elements to be shown in different parts of the client.

	infobox_url

	The url to get the corresponding infobox.

The inline and twolines entries are meant to be included in the
results box. The infobox_url provides quick access to the URL where we
will get the infobox data, but you can just replace the trailing infobox/
part and replace with whatever other valid suffix. at the moment of writing,
the URLs implemented are form/, markup/, depending/.

importing from ghini.desktop

Please consider this work in progress, try out the instructions, and be
prepared to ask for help or to open an issue if the present instructions do
not work.

First of all: taxasoft-ghini is not complete, not yet. The current goal is
to have it do something useful, and to be visible on-line, it does not (yet)
substitute ghini.desktop. Not at all. Expect things to be exciting, but do
not expect things to work out of the box.

Got this? Good, now let's see how to copy your ghini.desktop collection
into taxasoft-ghini!

from ghini.desktop

	open ghini-1.0

	export your (complete) data to csv.

	close ghini

	open ghini-1.0 again,

	create a new sqlite3 connection,

	let ghini create the database.

	import the data, this will again initialize the database.

	close ghini

the result of the above steps is an expendable sqlite3 database: this way
whatever we do on it, it has zero impact on your original data.

	remove all taxonomic information that is not used. we do this straight
on the expendable database:

sqlite3 ghini.db
delete from genus where id not in (select genus_id from species);
delete from family where id not in (select family_id from genus);
delete from genus_synonym where genus_id not in (select id from genus);
delete from genus_synonym where synonym_id not in (select id from genus);

	consider removing history too, it's not imported anyway:

delete from history;

	open ghini.desktop-1.0

	export your (reduced) data to csv.

this will take a fraction of the time for the previous export.

	close ghini

now to taxasoft-ghini

	enter the directory of your check-out;

	activate the virtual environment;

	move any previous database out of the way;

	create a new database and initialize it:

./manage.py migrate

	consider whether you also want the intermediate taxa, between ranks
familia and genus. since importing this information takes rather long,
it is not included in the 'migration' command. if you want this data,
you must request the import explicitly, with:

./manage.py import_genera_derivation

have something else to do in the meanwhile, this will take no less than
one full hour. on my laptop, writing to a sqlite3 database, it lasts 2
hours.

if you're in a hurry, ask for a partial genus import, limiting to the
genera in your trimmed database:

./manage.py import_genera_derivation --filter-genera <your genus.txt file>

you can repeat the command without filtering, whenever you know you're
not going to use the database for a couple of hours.

	run the command:

./manage.py import_desktop <location of second export>

this will output as many + as the objects it inserted, as many . as
the objects it already found in place. for species, a v is added if
the related species is at lower rank.

the genus list in particular, that should be just a sequence of dots. if
it is not, it's because you're importing genera that were not created
during the previous steps. that's clearly not good and you should review
your data.

the opposite goes for the species list: remember that with ghini reloaded
fictive species are not any more needed. A dot tells you that the
corresponding taxon was found in the database, at some higher rank.

it is normal that importing accessions takes longer: for each object we
are creating not only the accession but also the verificaiton object that
links the accession to the corresponding taxon.

	create your superuser:

./manage.py createsuperuser

	run your server:

./manage.py runserver

	I'm sure there will be errors. please open issues about them, and if you
have a solution, propose it.

Index

 _static/ajax-loader.gif

_images/participate-20190722162120.png

_images/participate-20190722162509.png
Add plant

Location: (+

£%.50 36m1

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/participate-20190722114427.png
Arecoideae Beilschmied
Arecaceae - 0 verifications; 0 subtaxa

Edit

Add sub taxon
Add verification
Delete

_images/participate-20190722120634.png
Home> Garden » Plant ima

Add plant image

H

T—

_images/participate-20190722113813.png
[rctie
Designates whether this user should be treated as active. Unselectthis nstead of deleting accounts

(4 staff status.
Designates whether the user can 0g nto this acmin ste.

() superuser status
Designates that ths user has all permissions without explicity assigning them.

_images/participate-20190722161158.png
@ Insert~ Tools~ Tags ~

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to taxasoft-ghini's documentation!

 		
 introduction

 		
 serving

 		
 fallback

 		
 showcasing

 		
 participating

 		
 your account

 		
 organize your pictures

 		
 bulk inserts

 		
 adding images

 		
 searching

 		
 technical documentation

 		
 rest-api

 		
 importing from ghini.desktop

 		
 from ghini.desktop

 		
 now to taxasoft-ghini

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

